Data Analysis Training in STATA, SAS, SPSS, Eviews, R & Excel package

Training Content

  • How to develop effective research tools
  • Understanding the relationships between research tools and data analysis
  • Skills of managing FGDs, KIIs and individual interviews
  • Skill of data editing, cleaning and coding questionnaires
  • Skill of developing a data entry templates
  • Mastering data entry in a given template
  • Univariate, Bivariate and Multivariate data analysis procedures
  • Interpretation of analysis package outputs
  • Fundamentals of research reports writing

       

 TRAINING CURRICULUM FOR STATISTICAL ANALYSIS PACKAGES

A). ADVANCED  EXCEL 

Topic Content Mode of Delivery
Understanding Data & its Concepts ·   What is statistics?

·   Types of data

·   Variables

·   Measurements of variable


Interactive Teaching  
Designing and managing Data Entry Screens ·   Brief introduction to Microsoft Excel

·   Designing entry screens for surveys

·   Using Data validation while designing entry screens

·   Data conditional formatting

·   Using advance EXCEL form Add-on

·   Practicing Data entry

·   Data entry using Excel forms


-Interactive Teaching  

 

-Take home assignment

Database Management ·   Introduction to building databases in EXCEL

·   Conducting data manipulations and transformations using advanced formulae

·   Creating new variable using EXCEL functions such as IF functions

·   Merging datasets using the VLOOKUP Function, HLOOKUP Function

·   Using excel tables

·   Concatenating Functions

·   Importing and exporting EXCEL data


Interactive Teaching  

 

-Take home assignment

Group work 

 
Data analysis and graphing Conducting Univariate analysis ·   Analyzing data by use of frequency tables

·   Conducting Descriptive statistics

·   Graphing of quantitative, qualitative,

·   Trend analysis graphing


Interactive Teaching  

-Take home assignment

Data analysis and interpretation using PIVOT table and graph ·   Conducting Bivariate analysis

·   Cross tabulations

·   Pivot graphs

·   Formatting a PivotTable

·   Using Advanced Data Field Settings in Pivot table

·   Creating PivotChart Reports from Scratch

·   Adding Fields to a Pivot Chart


-Interactive Teaching  

One on one guidance on personal computer

 

Regression Analysis and Correlational analysis ·   Conducting correlation analysis

·   Simple linear regression

·   Multiple regressions

·   Testing for differences using T-Tests


-Interactive Teaching  

 

 
Linking and Automating Data analysis tables and graphs

 

·Introduction to linking sheets in same or different worksheet

·Using Count, count if and count ifs function

·Using the Sum if and sum ifs

·Using the average if and average ifs

·Combining various formulae

·File Protection

·Cell Protection

·Data backups


-Interactive Teaching  

Group presentation

 

B) . ANALYSIS USING  STATA, R, SPSS,  SAS & EVIEWS

Topic Content Mode of Delivery
Understanding data and its concepts ·   Different types of data

·   Variables (Qualitative and quantitative)

·   Measurement scales

·   Basic statistical concepts

-Interactive Teaching  

-Take home assignment

 

Use of specific analysis package
Data Management ·   Software concepts

·   Designing data entry templates/screens

·   Data coding

·   Data entry

·   Data transformations (generating new variables from existing variables)

·   Merging datasets


  • Interactive Teaching  

– Take home assignment

 

 

 

Univariate analysis

 

·   Descriptive statistical analysis

·   Frequency tables

·   Graphing data (pie charts, bar graphs, scatter plots, line graphs)


-Interactive Teaching  

-Group work

 

 
Bivariate data analysis

 

·   Correlation analysis

·   Association tests (chi-square tests)

·   Analysis of quantitative and qualitative variables (E.g Comparing means by different categories)

·   Tests for differences (One sample T-test, paired sample t tests, independent sample t-tests, ANOVA tests)


-Interactive Teaching  

-Individual presentation 

– One on one guidance on computer 

Multivariate Analysis

 

·   Data modeling concepts

·   Model specification and selection criteria

·   Diagnostic tests for model specification errors

·   Linear regression models (simple and multiple regressions)

·   Count dependent variable models (poison regression models)

·   Binary dependent models (Logit and Probit models)

·   Categorical outcome models (Multinomial logistics models, ordered logit models)

·   Step wise regression models

·   Dummy variable regression models


Interactive Teaching  

-Individual presentation

– One on one guidance on computer